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Variation with cavity Q of the beat frequency between axial 
modes of a gas laser 
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Abstract. Investigations at 0.633 pm and 1.15 pm in the He-Ne laser show that 
beat frequencies at about c/21 and 2 4 2 1  between neighbouring axial modes are found 
to shift linearly with inserted cavity loss. These effects are explained using Lamb 
theory. Information is gained concerning the stability of mode distributions. The 
effect is also investigated in the argon ion laser at 0.488 pm. 

1. Introduction 
Investigation of the beat notes between modes in gas lasers was carried out in the first 

gas laser (Javan et aZ. 1961) and the frequency interval between beats confirmed the 
existence of the axial and transverse modes predicted by Fox and Li (1961). Bennett (1962) 
extended the work and analysed the splitting of the beats at about c/21 in terms of the 
‘pulling’ and ‘pushing’ processes which occur when two or more axial modes interact 
with an inhomogeneously broadened line. This analysis was confirmed and extended by 
the semiclassical laser theory of Lamb (1964). Fork and Pollock (1965) computed the 
mode intensities and beat frequencies for the case of two axial modes as a function of 
resonator tuning using Lamb theory, but not for the case of variable IT and Q,  h‘IcFarlane 
(1964) made measurements of the variation of beat frequency between two axial modes 
of a laser as a function of detuning. His measurements were compared with Lamb theory 
but the mode interaction terms were ignored. 

In  the present work the frequency variation between consecutive pairs of axial modes 
in a gas laser has been investigated as a function of cavity Q. The  beat frequency is found 
to change with Q and this effect, first noticed in the 0.633 pm laser line of He-Ne, has 
been further investigated at 1.15 pm and on the 0.488 ,um line in an Ar+ laser. The  
effect is described theoretically by the rigorous application of Lamb theory for three modes, 
with all interaction terms taken into account. 

2. Experimental details 
The Q of a gas laser cavity may be slowly varied by a measurable amount using a skew 

Brewster angle flat (Allen et al. 1968). Unlike the technique of detuning the flat from the 
Brewster angle about an axis perpendicular to the direction of propagation of the laser 
light (Witteman 1966, Schleusener and Read 1966, Kiss and Salamon 1967), the skew 
Brewster angle flat is detuned by rotation about an axis parallel to the direction of propaga- 
tion. This has the effect of removing many of the undesirable features of the earlier device 
and of allowing a more accurately determinable variation of the reflection losses and 
cavity Q. 

The  laser light was detected by a photomultiplier, and the mode beat frequencies at 
about c/2l and 2c/2Z were observed in the following way (figure 1). Part of the signal from 
the photomultiplier was mixed with that of a local r.f. oscillator whose frequency could 
be swept about a pre-set mean value in synchronization with the output of an oscilloscope 
time base. The  difference frequency from this mixer, nominally 14MHz,  was fed to a 
communications receiver and its i.f. output fed to the y1 plates of the oscilloscope. The  
second part of the signal was mixed with the output of a frequency doubler driven by 
the same local r.f. oscillator. The 28 hCHz difference frequency was fed to a second 
communications receiver and its i.f. output fed to the yz plates of the oscilloscope. The 
frequency spectrum of the signal over two small ranges of frequency near c/21 and 2c/2Z 
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v7as thus displayed on the two beams of the oscilloscope in the manner of a conventional 
r.f. spectrum analyser. The range displayed could be varied between 0 and 50 kHz cm-l 
by choice of the sweep range of the local oscillator. In  this way, a 50 kHz shift in beat 
frequency could be made to correspond to a shift of about 10 cm on the oscilloscope 
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Figure 1. Block diagram of beat detection system. 

screen; this was equivalent typically to a change in cavity loss of about 1 Oj0 for the 0.633 pm 
line. The  resolution of the system was effectively determined by the bandwidths of the 
crystal filters in the i.f. stages of the communications receivers; the bandwidth of the filters 
combined with a careful choice of sweep enabled a resolution of about 500 Hz to be 
achieved for the beat notes. 

The beat frequencies were examined for a large number of inserted losses and the 
resultant frequency shift plotted against the change in loss. Such shifts have been observed 
for various types of cavity but the most reliable results occurred when a plano-concave 
cavity was used. This was because the skew Brewster angle plate could then be placed 
near the plane mirror where the laser beam was narrow and essentially non-divergent, and 
the loss due to the plate could be accurately determined. If the beam were wide, the 
inserted loss would become excessively dependent upon the optical homogeneity of the 
glass slide used. The  experiment was performed for a number of cavity lengths and for 
different dispositions of the discharge tube in the cavity. 

The beat at around c/21 from the argon laser line had an envelope about 30 kHz wide 
within which there were a large number of components whose positions varied with time. 
This structure was presumably due to instabilities in the plasma. The appearance of the 
beat remained essentially the same over a large range of inserted loss except that its mean 
frequency shifted. In  the cas,e of the He-Ne laser lines there were a number of narrow 
beats whose width ranged between 0-5 and 4 kHz. The frequency of each beat was found 
to shift linearly with loss (see figure 2). An exception to this behaviour occurred when the 
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Figure 2. Shift of beat frequency against inserted loss for the 0.633 pm line. 
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pattern simplified to one sharply defined beat indicating that the modes had become 
locked. This was confirmed by the fact that the beat at about 2c/21 also became well 
defined with a measured frequency of twice that of the single beat at around c/21 to within 
the limits of experimental measurement ( &  500 Hz). 

For a given loss the beat distribution stayed steady for a few minutes and then a new 
distribution appeared, the change being caused apparently by some form of cavity 
perturbation. This explains why a set of results of beat frequency against loss recorded 
over a time longer than a few minutes did not yield a single line, but a number of straight 
lines of approximately the same slope with different intercepts. 

It should, perhaps, be noted that no special attempts were made to stabilize the length 
of the cavity. However, the laser was shielded from thermal currents and dust, and no 
measurements were made until the system had been running for some hours. All measure- 
ments were made with the laser in (0, 0) modes. 

3. Theory 
Lamb (1964) has derived equations which determine the intensities of three interacting 

axial modes. If it is assumed that there is no phase correlation between the modes, then 
for a steady state these equations form a linear system. It is convenient to express them 
in matrix form as 

a = $W 
where 

(1) 

P1 012 

a = i,;). w = (;;:I and = (it&; Eb2 ;%). 
a represents thz gain parameters for the three modes, W describes their steady-state 
intensities, and S is a matrix whose diagonal elements represent saturation parameters and 
other elements represent interaction terms. All symbols, unless otherwise stated, have the 
same meaning as in Lamb’s (1964) paper. If differences are taken between the mode 
frequencies given by Lamb (equation 114) and arranged so that when v3 > v2 > v1 all 
beat frequencies are positive, then 

and 

8 describes the differences in Lrequency between the passive cavity resonances, o describes 
‘pulling’ of the modes and T describes intensity-dependent ‘pushing’ and interaction 
terms. Solving (1) for the intensities W and substituting in (2) gives 

(3) 
A A  

v = Q+Q+TS-’U. 

a consists of two terms, of which only the first includes the cavity loss. Assuming the 
cavity to have the same Q at the three mode frequencies, it is possible to write 01 = k, LI+ F,  
where 
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L is the cavity loss and A the passive cavity mode separation, and where 

1 V i V P  
Z i ( V ,  - U ) .  

f n = 2 =  

Substituting this expression for U into (3) gives 

It can be seen from this equation that the column vector representing the beat frequencies 
is a linear function of the cavity loss L. It ̂ remains to show that this linear dependence 
is not masked in practice by changes in a, T, S or F ,  which are all functions of the detuning 
of the modes from the line centre. Equation (4.) also holds for the case of two interacting 
modes but the matrices then reduce to a particularly simple form: 

GI = (Q2 - Qi), a = (rJ2-U1). 

The components of the matrices s  ̂ and 9 are as defined in Lamb's paper (equa- 
tions 109-129) with the approximation that the pulled mode frequency v is replaced by the 
cavity frequency R, wherever v appears in an argument of a Lorentzian or Gaussian functioni 
If alLfrequencies are written in terms of the axial mode spacing A, the components of S 
and T become functions of single detuning parameter a, where the detuning of the central 
mode from the line centre is given by v2 - w = aA.  The analysis is now concerned with 
evaluating the beat frequencies as functions of loss and detuning for various values of y, 
Ku and N2.  

It should be noted that not all possible detunings lead to stable three-mode (or even 
two-mode) solutions and it has therefore also been necessary to determine the intensities 
El2,  EZ2, E S 2  in the steady state for each value of a and of loss. If the solution predicts 
a negative intensity for one or more modes it is clear that this particular distribution of 
modes is not allowable. This analysis is not concerned with the evolution of the system 
into a steady state but only with the properties of those final states which can actually exist. 

It is possible to avoid the need to know the value of n' by expressing the two parts 
of c(, in terms of the inserted loss and the value of the inserted loss necessary to extinguish 
the laser. From Lamb (equation 82) 

Expanding 

and writing 

as before, we 

v 1 V l T P  
g,= -- +-A Z i ( V n  - U). 

2Qn 2eo?iKti 

If L,,, is the loss which must be inserted to extinguish the laser and L, is the cavity loss, 
then at threshold E, = 0 and . 
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Since the first mode to begin oscillation must be very near to the line centre, and since 

kl k N --Lo. 
d v  

Yab < KzL) 

The maximum inserted loss required to extinguish the laser is measurable and Le can be 
calculated. The ratio 

k ~ i n a x + L e  

k1 d r  
_ -  - 

is therefore known. I n  equation (4) a component xi of a can therefore now be written as 

where d = KujA. Similarly, expanding the function Z,(u,- CO) it is possible to show that 

and hence the components of Q can be computed. Substituting these values of a and Q 

into equation (3) allows the value of the beat frequency to be evaluated for a wide range 
of values of the detuning parameter a. 

4. Predictions of the theory 
The linear three-mode theory gives solutions for the mode intensities for all detunings 

except those which infer a symmetric distribution of modes about the line centre, i.e. 
a = 0, 0*5A, A. I n  these cases, there is strong competition and it is expected that one 
of the modes would cease to oscillate, leaving a simple two-mode system. The width of 
the region about the symmetric positions in which this competition is strong enough to 
extinguish one of the modes is dependent on the size of Yab, being less than O * l A  when 
Yab is less than 0.5A. This means that stable solutions can be obtained in this case for 
detunings where 0.1A < a < 0.4A. 

IO+ 
I n s e r t e d  loss 

Figure 3. Theoretical prediction of shift of beat frequency against inserted loss for the 
He-Ne 0.633 p m  line: Ku = SA, yab = 0*3A, Lo = 0.03, Lo = 0.01 and A = 130 MHz. 
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The factor Aj2n appears in all the terms on the right-hand side of equation (3) giving 
a linear dependence of the beat frequency with the inverse of the cavity length. The 
effects of changes in lVZjlT and N 4 / m  on the beat frequency are less than 1%, so that the 
position of the active medium in the cavity should not be important. 

As a specific case, the results for the 6.33 pm He-Ne laser may be considered in greater 
detail. A value of Ku = 6A has been assumed, corresponding to a Doppler width 
AV, = 1400 hIHz (Allen et al. 1967). Lo is taken to be 0.03. A plot of the calculated 
beat frequency shift against inserted loss is shown in figure 3 for a value of Yab = 0.3A. 
The  ‘fans’ show the limits of v2-v1 and v3-v2 for detuning of the modes given by 
OelA < a < 0.5.A. If the detuning of the modes from the line centre remains constant 
while the loss is changed, the beat frequency shift plotted against loss is represented by 
a single straight line. If a perturbation causes a sudden change in detuning, then the effect 
is to produce a straight line of similar slope to the original, but laterally displaced from it. 
If the detuning is continually changing, the beat frequency should follow a curve lying 
within the theoretical ‘fan’. It can be seen from the figure that the separation of the 
v2-v1 and v 3  - v p  beats is dependent on the loss, being about 5 kHz near threshold and 
30 kHz at maximum intensity. 

For the vz -vl beat, the slope within the ‘fan’, 8(vz-vl)/aL, is about ( -  8 li: 1) x lo6 s-l  
for A = 1.3 x lo8 s-l. This slope is a function of Yab, but the variation is less than 25% 
for 0 - l A  < Yab < 0.4A and, since the variation with detuning (for fixed yab) is of the 
order of 159/;, it reduces the sensitivity of the experiment as a means of determining Yab. 

5. Comparison of theory with experiment 
The experimental results fall into three groups, those concerned with the 0.633 pm 

line, those with the 1.15 pm line and those with the 0.488 pm line. The results exhibit 
very similar over-all properties but, since the width of the 0.488 pm beat note was con- 
siderably larger than any other, the measurements of its displacement were much less 
precise. 

For all experimental conditions, graphs of beat frequency against inserted loss were 
straight lines of negative slope. However, the measured gradients of the straight lines 
often varied from one experiment to the next, even for identical experimental arrangements. 
Typical results for the three laser lines are shown in figures 2 and 4. 
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Figure 4. Shift of beat frequency against inserted loss for the 1.15 pm He-Ne laser 
line and for the 0.488 pm Ar + line. 

Theory predicts that a plot of beat frequency against inserted loss should be a straight 
line, but that its gradient depends on the positions of the interacting modes with respect 
to the centre of the Doppler curve. The fact that straight lines are obtained experimentally 
seems to suggest that the configuration of the modes may be relatively stable for periods 
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of the order of minutes. Discontinuities in the straight lines are apparently the result of 
some external perturbation of the cavity, such as a current of air or a dust particle, changing 
the mode distribution from one stable configuration to another. This explanation is in 
agreement with the results of the three-mode theory where it has been shown that a slight 
movement of the interacting modes could cause the radiation field to change from a stable 
three-mode, to an unstable three-mode, and hence to a stable two-mode configuration. 
Presumably, if the interaction of four or more modes were considered such changes would 
be more likely, as the regions for stable multimode oscillation would be smaller. 

There are two sets of parameters which may be distinguished in the quantitative com- 
parison of theory and experiment, those describing the length of the cavity and the dis- 
position of the discharge tube in it, and those which define the atomic properties of the 
gas. It was not possible to vary the cavity length sufficiently to observe the anticipated 
dependence of beat frequency on length. To  obtain a variation in the gradient large 
compared with the random variations observed, the cavity length would have had to be 
changed by a large factor. This was not possible since for a long cavity the axial mode 
spacing is so small that it is difficult to restrict oscillation to a few modes; conversely, for 
a short cavity the beat frequency is too high to be detected by conventional photo- 
multipliers. As predicted by the theory, the variation of the parameters m/iV2 and i!V,"q 

had little effect upon the observed gradients, and so the ratio of cavity length to the length 
of excited gas was unimportant. 

The important atomic parameter to be considered is yab. The results for the three 
laser lines can most easily be discussed separately. There are a number of quoted values 
of yab for the He-Ne 1.15 pm line (Bolwijn 1965, 1966, 1967, Bennett et al. 1965). A 
figure between 40 and 70 MHz appears most probable although one result considerably 
in excess of this has been quoted (Schweitzer et al. 1967). The gradients of the theoretical 
curves are not strongly dependent on yab, The results for 1-15 pm suggest a value of 
30 & 20 MHz, in reasonable agreement with the predictions of other workers. No definite 
information is available for yab for the 0.633 pm line, though Fork and Pollack (1965) 
have suggested a value of about 20 MHz. The  results of the present work suggest a value 
of 30 -t 20 MHz. Finally it may be noted that the separation of the beat notes corresponding 
to v 3  -v2 and v2 - v l  agree well with theory. 

The  Ar+ system is rather different in that the linewidth appears to be of the order of 
the mode spacing (Bennett et al. 1966). It might be expected that the two- or three-mode 
approximation should not be valid since the degree of interaction between modes will be 
especially strong, This appears to be the case since the experiment results cannot be 
reconciled with any theoretical value of yab. 

6. Conclusions 
The observations on the variation of beat frequency with varying cavity Q have been 

successfully described using Lamb's semiclassical theory for two and three modes. The 
results give information as to which mode distributions are stable and how such distribu- 
tions vary with time due to small changes in the cavity. Values have been obtained for 
the constant yab which are in reasonable agreement with those of other workers for the 
case of the He-Ne laser. The occurrence of straight-line graphs suggests, perhaps 
surprisingly, that the positions of the oscillating modes across the gain curve are fairly 
stable with time and are not continually changing. Finally, the theory appears not to work 
for the argon ion laser, which suggests that the Lamb three-mode theory may not be 
suitable for lasers in which the natural linewidth is large compared with the axial mode 
spacing. 
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